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In-Band Scattéring from Arrays
with Parallel Feed Networks

D. C. Jenn, Senior Member, IEEE, and V. Flokas

Abstract—Approximate closed-form expressions are derived for
in-band scattering from an array antenna with parallel (corpo-
rate) feed networks. Multiple reflections are neglected and feed
devices of the same type are assumed to have identical electrieal
characteristics. The model is shown to be in good agreement with
results generated using a scattering matrix formulation. Based
on computed data, the characteristics of array scattering are
discussed.

1. INTRODUCTION

CATTERING from antennas has been the subject of study

since the 1950’s. Dicke investigated the properties of
antenna scattering with the intent of determining the antenna
parameters [1]. Extensive work has been done with regard to
dipole scattering and the effect of the terminal-load impedance
[2], [3]. The radar cross section (RCS) of horns [4], [5],
reflector antennas [5], [6], microstrip patches [7], [8], and
arrays [9], [10] have also been studied. In most of these works
the antenna feed terminals are connected to lumped loads,
and only [9] addresses the impact of the feed network on the
antenna-scattering pattern.

In this paper, scattering from arrays of elements with parallel
(corporate) feed networks is examined. The frequency of the
illuminating wave is assumed to be the same as the operating

frequency of the array. Therefore, most of the received energy
* will be delivered to the load at the array terminals if the feed is
well designed. However, even for well-matched arrays, small
mismatches exist within the feed. For a large array these can
number in the thousands. Reflected signals generated at each
of the mismatches will return to the aperture and reradiate a
scattered field. The total scattered power is a small percentage
of the incident power, but the many mismatches can add
coherently under some conditions, yielding a significant RCS.

II. ARRAY RADAR CROSS SECTION

“The prediction of in-band antenna RCS is difficult because
of the many scattering sources both at the aperture and in
the feed circuit. The basic equation of antenna scattering has
been presented by several authors [2], [3], [11]. It gives the
total scattered field for a linearly polarized antenna when the
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antenna port is terminated with a load Zp,
JMo
4R,

Bo(71) = B°(Z;) + h(h-EY) To (1)
where Z, = R, + jX, is the radiation impedance, % is the
element effective height, and

L =2
C ZL+ 2z

Other quantities in (1) are the wavelength, ), the impedance
of free space, 179 = 377 ohms, the free-space wavenumber,
ko = 2m /A, and the distance from the target to the observation
point, R. Time-harmonic quantities are assumed and the e/«?
factor suppressed. Traditionally, the antenna scattered field has
been decomposed into two components called the structural
and antenna (radiation) modes [11]. In (1), ES(Z;) is the
structural mode; the second term on the right-hand side is
the antenna mode. When the load impedance is the complex
conjugate of the radiation impedance, Z7, is called a conjugate-
matched load.

Both terms in (1) are small for a well-designed array in its
operating band. For a “stand-alone” phased array, such as an
array of dipoles over a finite ground plane, the structural mode
is primarily due to edge effects—ground plane edge diffraction
and mutual coupling changes near the array edges. These affect
the scattering at wide angles and for a large array this scattering
components is generally small compared to others. For the
present analysis, large arrays are assumed and, therefore, only
the antenna mode is considered. :

For a single element (m,n) in a planar array, as shown in
Fig. 1, the monostatic radiation mode is given by

e—jkoR

Ty @

Jmo
4R,

B0, = { - B0, 01— [ on(0,) @)
where Iy, (8, ¢) represents the total reflected signal returning
to aperture element (m,n) when the incident wave is arriving
from a direction (@, ¢). The effective height can be related
to the maximum effective area of an single -element [3],
and assuming an z-polarized element (h = hZ) and a unit
magnitude §-polarized incident plane wave, the § component
of the scattered field becomes

Y T g Ikor
(B)mn = & - 91145(6 iK dmn)( -

’ Jrm6.0). @

The position vector to element (m, n) is denoted by d,;,,, and -

k= ko(Zsinf cos ¢ + §sin O sin ¢ + 2 cosh).
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Fig. 1. Planar array geometry.

The effective element area presented to the incident wave is
Ae =3 - 0 Ae. For a large planar array Acr, = dgdy so that
A, ~ cosfdydy.

The total scattered field is obtained by summing over all
elements

N, Ny
Eg = Z Z(Eg)mn

m=1n=1

Assuming identical elements and using the usual far-field
approximations for the scattered wave gives

Eg(’“>97¢)7= (jA e ) Z EI‘M(Q )P dmn.

m=1n=1

)
Using (5) in the definition of RCS [12] yields
2
2| No Ny
o(6,¢) = 47“4 33 a6, )| . (6)
m=1n=1

A diagram of a parallel feed network used to combine the
signals from elements lying along the x direction is shown in
Fig. 2. Note that the number of elements fed by the network
is N, = 29 where ¢ is the number of levels of couplers in the
feed. The total reflection at the terminals of the elements I,
is determined by the impedance seen looking into the feed
network. The reflection sources for a typical a parallel feed
are labeled in Fig. 2. The first scattering source encountered
by the incident wave is the radiating element. If the incident
frequency is in the operating band of the array and the wave is
arriving at near-normal incidence, the reflection coefficient r,.
should be small if the antenna is well designed. The portion of
the signal not reflected (%) is transmitted into the feed where it
proceeds to the phase-shifter input port. If the phase shifter is
not exactly matched to the transmission line, a small reflection
results. This reflected signal, determined by the reflection

APERTURE PLANE

4 Il N-1
" x
g g7
1
.
rzb N2
OUTPUT PORT !

Fig. 2. Parallel feed network.

coefficient r,, propagates back to the aperture. A portion is
again reflected by the radiating element since it is assumed
to be reciprocal, and the remainder reradiated. The process
continues as the signal travels deeper into the feed network.

An array feed network can be extremely complicated, with
potentially every transmission line discontinuity a source of
reflected signals. At first glance it might appear that the
majority of these reflections are random in phase and ampli-
tude. However, high-performance arrays (i.e., ones with low
sidelobes and accurate beam pointing) maintain very close
tolerances on phase and amplitude. Consequently, the many
small reflected signals inside of the beamformer can add
coherently for the same reason that a highly focussed radiation
beam is obtained—path lengths to the aperture are designed
to provide a linear phase.

It is possible to compute the array RCS rigorously using
matrix circuit analysis (e.g., scattering matrices) in conjunction
with the method of moments [13]. All interactions between
the aperture and devices in the feed network are included,
but the formulation is not flexible to changes in the number
of elements or type of radiating structure. Furthermore, large
amounts of computer memory are required because both the
method of moments matrix and the network matrix are solved
simultaneously.

The array scaitering equations can be reduced to closed form
if some assumptions are made with regard to the electrical
characteristics of the feed devices. For an approximate analysis
of the feed scattering, the following assumptions are made:

1) Devices of the same type have identical electrical char-

acteristics. For example, all the radiating elements have
the same reflection and transmission coefficients, 7,
and #,.. For convenience, the reflection and transmission
coefficient phases of all devices are arbitrarily set to
zero. The exception to this is the phase shifter, which
has a transmission coefficient of the form

t

— JXmn
tpe

Prn
where
= (m = Do + (n = 1)fs

os = kod sin 8, cos @ @)
Bs = kody sin 0, sin ¢s. ’
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Magic tee with the difference port loaded.

(85, ds) is the direction of the array radiation beam.
Thus, the magnitude of the transmission coefficient is
the same for all phase shifters, but the insertion phase is
allowed to vary linearly across the array.

2) All of the couplers are represented by magic tees, which
implies uniform excitation of the elements, i.e., this is
not a low sidelobe feed.

3) At frequencies in the operating band all of the feed
devices are well matched so that 7 < 1 and higher order
reflections can be neglected.

4) Lossless devices are assumed; for each two-port device
I + [t = 1.

Now consider an array as shown in Fig. 1 with parallel
feed networks along the z direction (the coupling network
along the y direction is assumed to be perfectly matched and
therefore does not contribute to scattering). With the above
limitations, the fraction of the incident signal entering the
radiating elements that is reflected at various points in the
feed, and then returns to the aperture is given by

Tion & el mn 27, g0 Bmn 4 tftﬁrceﬂx"‘" edBmn

+ titzejxmn[(Ei)mn + (Eé)mn + ] @
where

n=(m-La+(n-1)p
a = kod, sin B cos ¢ )
B = kody sin § sin ¢.

The quantities (E{Z)mn represent reflected signals returning to
element (m,n) which originate at the gth level of couplers.
The transmission coefficients are squared because the signal
passes through each device twice. The factor of two in

the exponent multiplying the coupler terms does not appear
explicitly; it is included in the value of (E})yn.

The RCS is obtained by inserting (8) into (6). The double
summation becomes

Z Zrmn(e ¢) e dmn

m=1n=1
N, Ny
= Z Z {(Tr + tf‘rp)ejzA"‘" 4 tztiejz(x”’“”+Am")rc
m=1n=1
+ £28242eI O P A (B s+ (B + -1}
(10)

Now, rearrange (10) so that terms with common reflection
coefficients are collected

5 3 Tl

m=1n=1

= Z { Z rped2imn 4 Z t2r. eJZA’“"

m=1

+ Z t%t;zrcejz(Amn_’_an) + Z tft;tz

X [(BD)mn + (Bg)mn + - -]ej(Amn+an)},
(11)

The exponentials are separable with respect to the summation
indexes m and n. The first three terms are recognized from
array theory. Performing the summations gives

Z Zrmn(a ¢) eFd

m=1n=1

= (r, +177p)

ej(N —l)aej(N -1 SlIl(N Ot) Sln(N 6)
sin & sin 8

i (Ny ——1)(ﬁ+,85)51n[ (B +8s)]

sin(B + Bs)

{t2t2r eI (Na=1) (et )SIH[N o+ o<3

+ Z £242¢2

Jeitm=D)(eter)

sm o+ as

X (B )mn A (B )mn £ -

(12)

To evaluate the coupler scattering contribution, expressions
for the (E(/;)mn must be determined. A magic tee with the
difference port loaded is shown in Fig. 3. This configuration
can be used to represent any three-port power divider as well.
Reflections can arise from mismatches at the:inputs of both
side arms (7. at 2 and 3), and the sum and difference output
ports (rx at 1 and ra at 4).

Consider a coupler in the first level which combines the
received signals from aperture elements m and m/ = m + 1.
The phase angles of the signals delivered to the coupler side
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arms are d,,, and §,,/, Where
bpn = Apn + Xpn
= (p— Déa + (n - 1),
L =ata,
&y =0B+0s.

The signal incident on the coupler (¢,t,t. in each side arm) is
combined in the magic tee according to its scattering matrix

(p=morm’) (13)

\FOI 1 0

2]t 0 0 1

C=Z11 o0 o -1 (14
01 -1 0

In effect, reflections inside of the magic tee can be modeled by
two reflection coefficients: one for the “sum type” of scattering
sources (rg) and the other for “difference type” scattering
sources (ra). Reflections can originate in the coupling region
itself, at the junction of the sum port with the side arm of
the next level of couplers, or the difference port load. From
a straightforward summation of the incident wave signals and
some algebraic manipulation [12], the total reflected signals
arriving back at the side arm ports are

(Ei)mn = ’:7‘2 Cos (——6mn —; 6mln)

Srmn + (5m’n>] eI Bmnt8,00/2 (15)

+ jra sin ( o)

and

(B mim = [7"2 cos (67"—"%6—"“—")

—J7a Sin (?_%M)}ej(émn+6m,n)/z 6)

form =1,3,5,.-- ,VNE. These equations indicate that the RCS
is not only dependent on the reflection coefficients, but also
on the relative phases of the signals entering the side arms.

The remaining sum in (12) can be reduced to closed form
by using (15) and (16). First replace ., with its equivalent
given in (7) and then substitute in the detailed expressions for
(E)mn and (E})m/rn. The result is

N, _

Z (E}) e’ (M=

m=1

(i (4m—3)¢./2

gw L : gz
+ |rscos| =) —jrasin| —
rwcos () - srasin (&
N?”
X Z eI (4m' =56 /2
m'=24,...
With a change of index and normalization, the sums reduce to

&\ sin(Npés)
[’"2 cos® (?) N, /2sin(2¢€,)

T & sin(Np&;)
—rasin’ (5) N, /2sin(2¢,)

an

:Iej(Nz—l)Em. (18)
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Thus, (12) has been reduced to a sum of trigonometric func-
tions :

N. N.
1 x v o
T (8, ¢) e7F-dmn

sin(Nza) sin(Nyf) i, -1y
N, sin(a) N, sin(g)
sin(Ny&y) iy, e,
Ny Sin(fy)
X {tTtpTc sin(ﬁw)

X [rz cos? (%) — jra sin? (%)]
sin(Na&a) F(Ne—1)€
[ S [ RN O 19
N, /25im(26,)° i a9
Equation (19) shows that the total scattered field is a sum

of scattering patterns, each one from an identifiable level of
the feed -

E*=E!+ES+E:+Es +Ex + -

= (rr +1t7)

x ej(NI—l)a

ej(Nz —1)¢. 4 tzt?)tz

(20

If the array size is very large in terms of the incident wave-
length, then N,.d, is large and the pattern functions in (19)
have narrow peaks. If this model is to be used to predict
the locations of high RCS peaks (usually the case in the
initial design stages), then it is sufficient to approximate the
magnitude squared of the sum in (20) by the sum of the
magnitudes squared

|E?|? ~ | B2 +| B+ | B2+ | B P+ B, |+~ @D
This neglects the cross products and relative phases of the

terms in the scattered field, but allows the total RCS to be
expressed as a sum of component radar cross sections

ORO,+0p+o.+oxn, +toa, +--- (22)
or
47 A% cos® 9
o(f,9) = — 2

o [ sin(N,a) sin(Ny,B)>2
X TT( Ngysina Nysinfg
4 sin(Npa) sin(N,3) 2
* Tﬁtr( N, sina N, sin g )
sin(Ny€,) sin(Ny&,) ) 2
< Ngsing&, Nysing,
+ 3 cos* (62
sin(No&e) sin(N,§,) )2
* (Nw J2sin(2€,) N, /2sin(2€,)
+ thtatara sin®(€:/2)
X ( Sin(nga:) sin(Ny:fy) )2 + .- :I
N /2sin(2¢,) N, /25in(2¢y) ’
(23)

+ t4t4'f'2

r'p’c

The trigonometric terms in (23) have been normalized by
dividing through by N,N, and A is the total aperture area
_of the array, A = N,N,d.d,.
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One can extend this result to include more levels of couplers.
Two terms must be added to (23) for each additional level of
couplers in the feed. One term accounts for sum arm reflections
and the second for difference arm reflections. In general, for
g=>1

4rA%cos?d , , 42
0%, =~y tetitir
g—1

)
H cos (2(2 ' 51)} cos? [2(271)¢,]

y < sin(N,¢&,) Slﬂ(Nyfy)>2
N, /225in(29€,) N, sin(£,)

41 A2 cos® § -
OAq = —v—titstﬁ 2 (t )Z(q D

H €O (2(/3 1)&5)} sin® [2007 D¢ ]

x( sin{N¢&) Slﬂ(Nyfy)>2
N /29sin(226,) Nysin(&y) / -

2(tg)2@ D)

(24)

(25)

The factor (t5)2(~1) accounts for energy lost from reflections
at the ¢ — 1 previous levels of couplers.

III. COMPUTED DATA

The validity of the approximate model is demonstated by
comparing results obtained using (23) to those from a scaiter-
ing matrix formulation similar to the one described in [13]. For
the scattering matrix solution the aperture element is simply
represented by a two-port device with reflection coefficient 7.
This allows direct comparison of the approximate and matrix
solutions. Since the element scattering model is the same, any

difference can be attributed to the assumptions made in the .

development of (23).

Consider a phased array antenna operating at wavelength

Ao with the following parameters:

* N, = 64 and N, = 1 (linear array);

* dy = 0.5X,, ¢ = 0°, and h = ), (d, is replaced by A
in (23) to obtain linear array RCS from the planar array
formulas);

* Tr =7Tp =T.=ryg = ra = 0.2 (all reflection coefficients
are 0.2);

* incident wave frequency equal to the operating frequency
of the antenna (A = A,);

* three levels of couplers (rs = ra = 0 for ¢ > 3).

The matrix calculation has been limited to three levels of
couplers to keep the number of simultaneous equations man-
ageable. With ¢ = 3, subarrays of eight elements are coupled at
the aperture (i.e., the eight elements sharing the same coupler
at the third level). Because all devices of the same type are
assumed identical, the matrix solution need only be applied to
eight elements. Larger arrays can be decomposed into arrays
of eight-element subarrays with the appropriate phase-shifted
excitation. In this case, 60 simultaneous equations must be
solved.

0 ——t
RIGOROUS

APPROXIMATE

—~
/m
o
N
~N
<
~~
o 40 v 40
RIGOROUS : RIGOROUS

1.p°=-n:/4

Tt

Ll
g

-50 0 S0

MONOSTATIC ANGLE (DEG)

Fig. 4. Comparison of the approximate and matrix solutions for a linear
array (Ny = 64, dz = 0.5), h = 1A, 6; = ¢s = 0°, ¢ = 0° and three
levels of couplers).

The two solutions are compared in Fig. 4. The highest lobe
at @ = 0° is primarily due to specular scattering from the
aperture, although feed reflections also contribute. The lobes
near § = +90° arise from Bragg diffraction. Spikes between
the specular and Bragg lobes are from coupler mismatches.
The matrix solution allows specification of the line lengths
between devices in the feed. Three patterns in Fig. 4 show
the RCS for line lengths of 4y = 0, n/4, and =/2. As
expected, the lobe heights vary with 1y because the phases of
the reflected signals change with line length. This effect is not
observed in the approximate solution because the noncoherent
sum (21) is used in place of (20). Note that (21) is not
crucial to the development of the approximate model; it simply
allows the total RCS be be written as a sum of radar cross
sections.

The behavior of the RCS with scan is illustrated in
Fig. 5. If the radiation beam is scanned, then RCS lobes
depending on the terms with &, and &, also scan. Fig. 5
shows the RCS obtained for a beam scan of 45° in the z-2
plane (a; = —kd,sin(m/4)). Note that RCS components
arising from reflections ahead of the phase shifters remain
fixed. '

The RCS characteristics of two- dlmensmnal arrays can be
visualized by plotting constant level contours in direction
cosine space. Fig. 6 shows the RCS of a square planar array
with a scanned radiation beam (0 = 30°, ¢ = 45°) and the
parameters listed above except that Ny, = 64 and d, = 0.5.
High levels are present along the principal planes of the
array, but the levels drop off quickly away from these planes
because of the separable products in (23). As in the linear
array case, the contours originating from reflections behind
the phase shifters scan along with the antenna-beam. Because
the RCS terms are separable in direction cosine space the
contours are straight lines (i.e., u = sinfcos¢ a constant
and v = sin@sin ¢ a constant).
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Fig. 5. Monostatic RCS of a linear array (N, = 64, dx = 0.5A, h = 0.5A,
and three levels of couplers). (a) s = 0°. (b) 8, = 45°.

IV. SUMMARY AND DISCUSSION

An examination of the computed RCS in the last section
reveals several important characteristics:

1) The level of the lobes increases with the magnitudes of
the reflection coefficients and the area. The area depends
on the number of elements and their spacing.

2) The lobe spacing in the RCS pattern for the first level
of couplers is determined by the physical spacing of the
couplers, 2d,. This holds for other levels of couplers
as well. For instance, the second level of couplers are
spaced a distance 4d,, and therefore a new set of RCS
lobes appear between the lobes generated by the first
level of couplers.

3) Lobes associated with reflections occuring behind the
phase shifters contain the factor x,,, and thus, their
positions are determined by the phase shifter settings.

The approximate results degrade gracefully as the assump-
tion of small reflection coefficients is violated. As a typical
example, when compared to a rigorous result with 19 = 7 /4,
the approximate solution peaks were generally within 2 dB for
7 = 0.1, but only 5 dB when r = 0.4.

The approximate formulas are conservative, i.e., yield
higher than actual RCS peak levels, for several reasons. First,
a lossless feed network was assumed. All practical antennas

sin B sin ¢

V=

-1

u=sin 6 cos ¢

Fig. 6. Monostatic RCS of a planar array for a scanned radiation beam
(Ne = Ny = 64, do = dy = 05X, s = 30°, ¢s = 45°, and three
levels of couplers). Contours enclose areas of o/A% > 20 dB.

have some loss and feeds with solid-state devices can have
significant losses. It is not unusual to encounter phase shifters
with 1 to 2 dB of loss, and because the scattered signals
travel through the device twice, the net reduction on RCS
can be significant (note the tg dependence for reflections that
occur behind the phase shifters). Second, equal power splitters
have been assumed. For a low sidelobe antenna the feed is
designed to provide a tapered amplitude distribution. The
required coupler distribution will also yield some reduction
in RCS sidelobes relative to those obtained using equal
power splitters. Finally, all reflection coefficients of similar
devices will not be the same as postulated. As a result of
manufacturing imperfections they have random amplitude
and phase components with some mean and variance. The
approximate equations derived here can be used to predict the
average RCS of the array if average values of transmission
and reflection coefficients are used.
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